Théorème de Bezout

Exercice ANAL04Sp01

On considère l'équation (E) : 13x - 49y = 11

- 1) Déterminer deux entiers relatifs u et v tels que 13u + 49v = 1
- 2) Donner alors une solution particulière de (E).
- 3) Quel est l'ensemble des solutions de (E)?

Exercice ANAL04Sp02

Pour la proposition suivante, indiquer si elle est vraie ou fausse et donner une démonstration de la réponse choisie. Une réponse non démontrée ne rapporte aucun point.

Proposition:

L' ensemble des couples d'entiers relatifs (x;y) solutions de l'équation 12x - 5y = 3 est l'ensemble des couples (4+10k;9+24k) où $k \in \mathbb{Z}$.

Exercice ANAL04Sp03

Déterminer 1 'ensemble des couples (x;y) dans Z vérifiant les équations suivantes

- a) 5x + 12y = 20
- b) 6x + 8y = 7
- c) 6x + 8y = 10

Exercice ANAL04Sp04

Une seule des quatre réponses proposées est exacte.

On se propose de résoudre l'équation (E) : 24x + 34y = 2,

où x et y sont des entiers relatifs.

A: Les solutions de (E) sont toutes de la forme

$$(x;y) = (34k-4; 5-24k), k \in \mathbb{Z}$$

B: L'équation (E) n'a aucune solution

C : Les solutions de (E) sont toutes de la forme

$$(x;y) = (17k - 7; 5 - 12k), k \in Z$$

D : Les solutions de (E) sont toutes de la forme

$$(x;y) = (-7k ; 5k), k \in \mathbb{Z}$$

Exercice ANAL04Sp05

1) Démontrer qu'il existe au moins deux entiers relatifs u et v tels que 13u - 23v = 1

Déterminer à l'aide de l'algorithme d'Euclide, deux de ces entiers.

2) Résoudre dans ZxZ l'équation

$$-156x + 276y = 24$$

DPI

© Gérard Hirsch Maths54 - INPL